Posts Tagged 'computational skills'

How to design video games that support good math learning: Level 5

Procedures or thinking?
Part 5 of a series 

The vast majority of video games that claim to teach mathematics do not actually do that. Rather, what they do is provide a means for students to practice what they have already been taught. For the most part, the focus is on basic computational skills.

A good example is the first-person shooter Timez Attack. Mastery of the multiplication bonds (times tables in parent-speak) is an extremely useful thing to achieve, and the sooner the better. All it requires is sufficient repetition, and I know of no better way to achieve that than with an entertaining video game.

Such games are the low hanging fruit for the math ed video game designer, and like most low hanging fruit, it has pretty well all been picked, leaving game designers coming into the math ed space having to look elsewhere for a useful application of their talents. The good news is, since repetitive practice of basic computational skills is a tiny part of learning mathematics — albeit an important part, in my view (some educators disagree) —  most of the fruit in the math ed orchard is still waiting to be picked. The bad news is, that fruit is a lot higher up, and thus more difficult to reach.

The difficulty hits you as soon as you decide to go for more than mastery (ideally to fluency) of already taught basic computational skills. Are you going to approach mathematics as a collection of procedures or as a way of thinking? These are not completely separate classifications; indeed, the latter is in many ways a  broader conception than the former. But they do tend to cash out in very different forms of pedagogy. (Spoiler: instruction versus guided-discovery.)

This distinction is to a great extent relatively recent. Until the nineteenth century, mathematicians viewed the discipline as a collection of procedures for solving various kinds of problems. Originally, the problems studied arose in the world. Then, in due course, the focus widened to include more abstract problems arising within mathematics itself. Proficiency in math meant being able to carry out calculations or manipulate symbolic expressions to solve problems.

By and large, high school mathematics is still very much based on that earlier tradition, so few people outside the professional mathematical community are aware that in the middle of the 19th century, a revolution took place.

Working in the revolution’s epicenter, the small university town of Göttingen in Germany, the mathematicians Lejeune Dirichlet, Richard Dedekind, and Bernhard Riemann pioneered a new, broader conception of mathematics, where the primary focus was not performing a calculation or computing an answer, but formulating and understanding abstract concepts and relationships. This was a shift in emphasis from doing to understanding.

For the Göttingen revolutionaries, mathematics was about “Thinking in concepts” (Denken in Begriffen). Mathematical objects were no longer thought of as given primarily by formulas, but rather as carriers of conceptual properties. Proving was no longer a matter of transforming terms in accordance with rules, but a process of logical deduction from concepts.

Of course, during the course of this conceptual thinking, mathematicians still made use of procedures. What changed was the primary emphasis. The reason for the change? An increase in complexity, in science, technology, business, society, and, derivatively, within mathematics itself. In a simple world, a few well-practiced procedures can generally get you by. But when things get more complex, you need understanding in order to select from a variety of different procedures, to fix old procedures that no longer work, and to develop new ones.

I give this somewhat lengthy detour through recent mathematical history not because it has a direct bearing on how we teach K-12 mathematics. The one attempt to modify K-12 education to take account of the 19th century shift in mathematics as practiced by the professional mathematicians, the “New Math” movement of the 1960s, was so badly bungled that even a professional mathematician, Tom Lehrer, satirized it. (It was also hardly “new math” at the time, being already a century old.) Rather, I am stressing the distinction between math-as-procedures and math-as-thinking because it is now extremely relevant to the way we educate our next generation of citizens. The complexity of 21st Century life is such that ordinary citizens now need to upgrade their mathematical knowledge and abilities the same way the professional mathematicians did in the mid nineteenth century. The changes in society, and in particular technology and the way we do business, that were made possible by the newer, richer, and more powerful mathematics that developed in the 20th Century, now affect us all in the 21st.

I discussed the growing importance of “mathematical thinking” in a “Devlin’s Angle” column for the MAA back in 2010, and summarized those arguments in a more recent article in the Huffington Post. My purpose here is not to argue for any one approach to the design of video games to help students learn math. Heavens, the medium is so new, and there are so few games of any real educational merit, there is scope for a wide variety of approaches. Give me any video game that plays well and helps students learn math and I’ll applaud, whatever the pedagogy.

What distresses me is that the medium offers so much promise for good mathematics learning, it is a waste of time, effort, and money to focus on the lowest level — repetitive practice of the basic, procedural, computational skills. We’ve done that. Let’s move on.

Step 1 for the math ed video game designer today is, to recap, deciding whether to develop a game to help students master mathematics procedures or to develop powerful mathematical thinking capacities. As readers of my book will already know, I favor the latter, in large part because mastery of mathematical thinking capacity carries mastery of procedures along with it, just as the person who sets out to build a house will have to develop skills in bricklaying, carpentry, plumbing, and so on, along the way. But as I said a moment ago, the challenge we face in K-12 mathematics education is so great, and video games offer such potential, hitherto largely untapped, I’ll settle for any approach that works.

It’s your call which view of mathematics you take, pre-1850 or post. Both have strong track records. But you do have to make that call, as it will affect every design choice you make from then on. Engineers who set out to build a bicycle and then act as if they are building a car tend not to succeed, even though both are transportation devices. I’ll try to make this blog series helpful whichever way you make the call.

I'm Dr. Keith Devlin, a mathematician at Stanford University, an author, the Math Guy on NPR's Weekend Edition, and an avid cyclist. (Yes, that's me cycling on the Marin Headland.)


Twitter Updates

  • RT @ShaunKing: I just reviewed @SheriffClarke's Master's Thesis. 1. It's bad. Very bad. 2. It's plagiarized from start to finish. It's un… 10 hours ago
  • RT @McFaul: If there was a good notetaker present, then he can read the MemCon. (I wrote many of them for Obama mtgs with Russians!) https… 10 hours ago

New book 2012

New book 2011

New e-book 2011

New Book 2011

May 2017
« Jan    

%d bloggers like this: