In it you mentioned mathematician’s notebooks – much like Beethoven’s scores – with things crossed out, paths leading to dead ends; and that when we see the proofs – or hear the symphonies – we see the final, close-to-perfect result of a lot of struggle.

So I’d really like to see Euclid’s notebooks.

A good proof is sort of like a chess game: you wonder why he started here, where he’s going, then all of a sudden, it’s “check”, = QED.

Speaking of proofs, have you read about Mochizuki’s proof of the ABC Conjecture? So far, nobody understands it, and Mochizuki isn’t talking. I hear that if the conjecture is really proved, it would clear up a lot of other areas.

Would it be unmathematical to assume the proof is valid, then go to the other areas that seem to depend on it, and see where that leads?

]]>Money! We had limited initial funding, so focused on the best platform to reach the largest sector of our initial target audience. Our aim is to produce Android and Web-based versions for the initial audience, then build out to older age groups. (Though to my mind there is a significant loss in going away from touch screens, since they allow the player to manipulate directly the mathematical concepts, just as the pianist or the guitarist feels the music in their fingers.) Our startup business strategy is to use the iOS version to help us raise additional investments.

]]>My first question is, why do you limit the platforms to portables? Is it because those are more suited to what you’re doing? I’m an old salt, rooted in desktops (before that, mainframes), who recently made the switch to laptops.

]]>means of this specific article, labeled

â€śHow to design video games that support good math learning: Level 6 « profkeithdevlinâ€ť.

Thank you ,Magaret ]]>

Level 6 « profkeithdevlinâ€ť with my best pals on twitter.

I personallyonly needed to distribute your great posting!

Thank you, Mel ]]>

Francois, I love Refraction. I have no problem using symbols as names, as in that game. What I find great about that game is the way the player has to manipulate the fractions in a meaningful way. The reasoning is with the actual fractions, not with symbolic representations of them. Great title too. Of course, it comes from a world class team! Thanks for writing.

]]>I’ve been working on educational games for about 4 years now, and share most of the opinions you’ve expressed in this series. Thanks for writing this up.

Math games are harder to design for me since a lot of research about math misconceptions is focused on symbols. It is hard to strike the balance of adding just enough symbols to allow transfer to the material schools are used to. I was curious to hear what your opinion was on the usage of symbols in this game: http://games.cs.washington.edu/Refraction/

Thanks!

-Francois

I can add that they are very motivated.

I agree that it is my job to help them to the next level by using symbols. ItÂ´s the same thing as when I want them do draw a picture when they solve complex problems. I donÂ´t leave them at that stage. They need the symbols as well, but first they need to be confident in the concept before they get to the abstract level.

Thank you for the tips about jiji and number bonds. IÂ´ll look into those games to see what they have to offer.

Happy Easter from Sweden

Birgitta WikstrĂ¶m